electrochemistry in an autoclave

Electrochemistry in an Autoclave

Contributed by Dr. Jim Hardy

Introduction

Acknowledgments

When I sit down to write about tricks of the trade and lessons learned in the practice of performing electrochemistry in autoclaves, my first thought is of all of those who preceded me in the adventure. This is only a partial and personal list: They are the researchers, facility engineers, supervisors, and technicians at Bettis and Knolls who paved the way. Some names that come to mind are Rick Garstka, Ted Druga, Bert Setterberg, Rudy Majcher, Jack Carr, Bob Rubino, Doug Thompson, Ken Granger, Rosemary Janik, Bill Archer, Garry Lynch, Irene Rosati, Mike Ochap, Dave Kedzierski, Keith Eklund, George Halbfinger, Mike Danielson, Yinfang Wang. Chief among those in other organizations who shared their stories was Digby Macdonald, who broke ground for many of us and was always eager to share his experiences.

Scope and Intent

This note will cover many topics that have only hot water in common. To fit within the space limitations of an application note, it will be a collection of lessons learned. As such, none of this is purely my own. There will be a stream of consciousness or memory and no part will be comprehensive. There may be future, detailed application notes to cover particular situations in depth, but they will await the questions that we hope this note will stimulate.

Safety

[…]

Converting chemical energy into electrical energy

Fuel Cells: Chemical to Electrical Energy

Converting chemical energy into electrical energy can be done in different ways, but for chemical energy stored in various fuels like hydrogen, electrochemical fuel cells are the most direct, and have the potential to be very efficient.

The electrochemistry side of fuel cells is rather straightforward.  Hydrogen, possibly with some carbon, on one side combines with oxygen on the other to produce water and possibly carbon dioxide.  The half reactions are separated so that the energy difference between reagents and products can be harvested as electrical energy.

Fuel Cells-EIS ApplicationElectrochemical Impedance Spectroscopy can identify problems that limit a fuel cell’s efficiency, by helping to optimize a cell, it can determine anodic and cathodic process mechanisms.  EIS is particularly good for measuring the equivalent series resistance of fuel cells, a major source of power loss in a low impedance device. Because of the modeling capability of EIS, you can also extract information on kinetics and mass transport in the fuel cell, both of which are crucial factors to fuel cell performance.  EIS is useful in both research and QC applications. EIS of fuel cells runs into some of the same low impedance device and setup limitations that also show up in batteries and supercapacitors.

[…]

This website uses cookies to ensure you get the best experience on our website. More information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this. Please review our Privacy Policy

Close