QCM detecting drugs

Detecting Drugs with QCM

Crystals reveal the answer: Detecting drugs with a quartz crystal microbalance Balancing in the heat A novel type of high temperature quartz crystal disc could make the perfect detector for small, portable gas chromatography (GC) systems, say US researchers. Such quartz crystal discs form the centrepiece of quartz crystal microbalances (QCMs), which are widely used Read more about Detecting Drugs with QCM[…]

The EQCM: electrogravimetry with a light touch

The EQCM: electrogravimetry with a light touch

Article now available at Springer by A. Robert Hillman   Abstract In its simplest manifestation, the electrochemical quartz crystal microbalance (EQCM) is a relatively new device for executing a classical technique, electrogravimetry. The advantages it brought were in situ applicability (notwithstanding prior misconceptions regarding damping by a contacting fluid), exceptional sensitivity and dynamic capability, thereby Read more about The EQCM: electrogravimetry with a light touch[…]

Characterization of an Electroactive Polymer Film

Characterization of an Electroactive Polymer Film

EQCM Investigations

This Application Note is intended to provide the reader with a general framework for characterization of an electroactive polymer film. Electropolymerization is a convenient way to control film growth either through repeated cycling, potential steps, or current steps. Examination of the film redox behavior in monomer-free, fresh electrolyte provides insight on doping and dedoping of these polymer films.

Polybithiophene films were assembled by cycling an Au-coated 10 MHz quartz crystal between 0 and 1.5 V in the presence of 1 mM bithiophene solution containing 100 mM tetrabutylammonium perchlorate (TBAP) in acetonitrile (MeCN). Potentials are reported against a Ag/Ag+ pseudo-reference electrode. The Teflon® cell was outfitted with a Teflon o-ring to prevent swelling from the acetonitrile and placed inside a VistaShield™. The cell was connected to an eQCM 10M™ which was coupled to a Reference 600™. Both instruments were connected to a computer running Resonator™ version 5.67. Bithiophene, electropolymerizes via a two-electron oxidation at potentials greater than ~1.25 V versus a Ag/Ag+ pseudo reference electrode.

Figure 1 shows two cycles of film growth. Cycle 1 (blue curve) shows only background (non-Faradaic) current until the potential is greater than 1.25 V. Cycle 2 shows additional Faradaic current beginning at approximately 0.75 V due to oxidation of the polymer film. Polymerization still happens at potentials greater than 1.25 V. The small spike at 1.1 V is related to an irreversible film rearrangement since subsequent cycles (seen when thicker films were prepared) show no current spike.

Figure 1: Electropolymerization of 1 mM bithiophene in 0.1 M TBAP/MeCN. Scan rate was 50 mV/s.

Figure 1: Electropolymerization of 1 mM bithiophene in 0.1 M TBAP/MeCN. Scan rate was 50 mV/s.

[…]

Electrochemical Quartz Crystal Microbalance - Gamry Instruments's eQcm

Quartz Crystal Microbalance

The Quartz Crystal Microbalance (QCM) is an exciting tool for the electrochemist. With it, the researcher can now follow not only the current that flows, but the weight changes of the electrode, too! This is a valuable tool when studying reactions which involve films, adsorbates, metal deposition, corrosion, or monolayer formation. It is sensitive enough Read more about Quartz Crystal Microbalance[…]

Quartz Crystal Microbalance

The Basics of a Quartz Crystal Microbalance

This tutorial provides an introduction to the quartz crystal microbalance (QCM), which is an instrument that allows a user to monitor small mass changes on an electrode. The reader is directed to the numerous reviews1 and book chapters2 for a more in-depth description concerning the theory and application of the QCM. A basic understanding of electrical components and concepts is assumed.

The two major points of this document are:

Explanation of the Piezoelectric Effect
Equivalent Circuit Models

The Piezoelectric Effect

QCM Basics

Figure 1. Graphical Representation of Thickness Shear Deformation.

The application of a mechanical strain to certain types of materials (mostly crystals) results in the generation of an electrical potential across that material. Conversely, the application of a potential to the same material results in a mechanical strain (a deformation). Removal of the potential allows the crystal to restore to its original orientation. The igniters on gas grills are a good example of everyday use of the piezoelectric effect. Depressing the button causes the spring-loaded hammer to strike a quartz crystal thereby producing a large potential that discharges across a gap to a metal wire igniting the gas.

Quartz is by far the most widely utilized material for the development of instruments containing oscillators partly due to historical reasons (the first crystals were harvested naturally) and partly due to its commercial availability (synthetically grown nowadays). There are many ways to cut quartz crystals and each cut has a different vibrational mode upon application of a potential. The AT-cut has gained the most use in QCM applications due to its low temperature coefficient at room temperature. This means that small changes in temperature only result in small changes in frequency. It has a vibrational mode of thickness shear deformation as shown below in Figure 1.

[…]

This website uses cookies to ensure you get the best experience on our website. More information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this. Please review our Privacy Policy

Close